Schmidt-Kalman Filter with Polynomial Chaos Expansion for Orbit Determination of Space Objects

Yang Yang, RMIT University, Han Cai, RMIT University, Kefei Zhang, RMIT University

Keywords: Schmidt-Kalman Filter, Polynomial Chaos Expansion, Preliminary Orbit Determination

Abstract:

Parameter errors in orbital models can result in poor orbit determination (OD) using a traditional Kalman filter. One approach to account for these errors is to consider them in the so-called Schmidt-Kalman filter (SKF), by augmenting the state covariance matrix (CM) with additional parameter covariance rather than additively estimating these so-called “consider” parameters. This paper introduces a new SKF algorithm with polynomial chaos expansion (PCE-SKF). The PCE approach has been proved to be more efficient than Monte Carlo method for propagating the input uncertainties onto the system response without experiencing any constraints of linear dynamics, or Gaussian distributions of the uncertainty sources. The state and covariance needed in the orbit prediction step are propagated using PCE. An inclined geosynchronous orbit scenario is set up to test the proposed PCE-SKF based OD algorithm. The satellite orbit is propagated based on numerical integration, with the uncertain coefficient of solar radiation pressure considered. The PCE-SKF solutions are compared with extended Kalman filter (EKF), SKF and PCE-EKF (EKF with PCE) solutions. It is implied that the covariance propagation using PCE leads to more precise OD solutions in comparison with those based on linear propagation of covariance.

Date of Conference: September 20-23, 2016

Track: Astrodynamics

View Paper