In-Situ VIS/NIR Measurements of Space Environment Effects on Spacecraft Surfaces

Donald Bedard, Royal Military College of Canada, Patrick Seitzer, University of Michigan, Alex Willison, University of Waterloo, Phil Somers, Royal Military College of Canada

Keywords: Hosted payload, spectroscopy, material characterization, space weathering

Abstract:

Laboratory material characterization experiments have shown that passive observational techniques that measure the spectral energy distribution of reflected sunlight from spacecraft and space debris could potentially be used to determine an object’s surface compositional make-up and even possibly its orientation. Such techniques, if proven to be reliable and consistent, would represent non-intrusive and cost effective tools that would benefit the overall space situational awareness (SSA) mission. However, to date, observations using either colour photometry or spectrophotometry to determine surface material characteristics of such objects have not produced encouraging results. One common problem that has plagued these attempts is the lack of understanding on how the spectral reflectance of the spacecraft surfaces evolves with time. There are a number of spacecraft materials whose spectral reflectance characteristics have been studied before and after spaceflight in LEO; there are no measurements on how the space environment gradually modifies the spectral scattering characteristics of these materials as a function of time. Furthermore, there are little or no in-situ observations of environmental effects on individually identifiable materials in MEO and GEO. This complicates the task of interpreting the spectral measurements of spatially unresolved spacecraft and orbital debris. This paper presents instrument concepts whose sole purpose will be to acquire on-orbit spectral reflectance measurements, at different observational geometries, of either witness samples or materials covering the surface of the host spacecraft. Such instruments could be flown as a hosted payload on an operational GEO satellite or as a dedicated payload on a microsatellite. Measurements would be acquired over the lifetime of the satellite and would observe how the spectral reflectance characteristics evolve during its lifetime. Furthermore, installation of one of the proposed instruments on multiple satellites would provide an opportunity to study the variation in space environment effects on the surfaces of spacecraft located in different orbital regimes, such as LEO, MEO, and GEO.

Date of Conference: September 20-23, 2016

Track: Poster

View Paper