Evidence-based Sensor Tasking for Space Domain Awareness

Andris Jaunzemis, Georgia Institute of Technology, Marcus Holzinger, Georgia Institute of Technology, Moriba Jah, University of Arizona

Keywords: space situational awareness, SSA, space domain awareness, SDA, evidential reasoning, Dempster-Shafer theory, decision theory, sensor tasking

Abstract:

Space Domain Awareness (SDA) is the actionable knowledge required to predict, avoid, deter, operate through, recover from, and/or attribute cause to the loss and/or degradation of space capabilities and services. A main purpose for SDA is to provide decision-making processes with a quantifiable and timely body of evidence of behavior(s) attributable to specific space threats and/or hazards. To fulfill the promise of SDA, it is necessary for decision makers and analysts to pose specific hypotheses that may be supported or refuted by evidence, some of which may only be collected using sensor networks. While Bayesian inference may support some of these decision making needs, it does not adequately capture ambiguity in supporting evidence; i.e., it struggles to rigorously quantify ‘known unknowns’ for decision makers. Over the past 40 years, evidential reasoning approaches such as Dempster Shafer theory have been developed to address problems with ambiguous bodies of evidence. This paper applies mathematical theories of evidence using Dempster Shafer expert systems to address the following critical issues: 1) How decision makers can pose critical decision criteria as rigorous, testable hypotheses, 2) How to interrogate these hypotheses to reduce ambiguity, and 3) How to task a network of sensors to gather evidence for multiple competing hypotheses. This theory is tested using a simulated sensor tasking scenario balancing search versus track responsibilities.

Date of Conference: September 20-23, 2016

Track: SSA Algorithms

View Paper