Toshifumi Yanagisawa, Japan Aerospace Exploration Agency, Masahiko Uetsuhara, , Kohei Fujimoto, Texas A&M University
Keywords: Track-Before-Detect, faint object detection, finite set statistics
Abstract:
Automated detection and tracking of faint objects in optical, or bearing-only, sensor imagery is a topic of immense interest in space surveillance. Robust methods in this realm will lead to better space situational awareness (SSA) while reducing the cost of sensors and optics. They are especially relevant in the search for high area-to-mass ratio (HAMR) objects, as their apparent brightness can change significantly over time. A track-before-detect (TBD) approach has been shown to be suitable for faint, low signal-to-noise ratio (SNR) images of resident space objects (RSOs). TBD does not rely upon the extraction of feature points within the image based on some thresholding criteria, but rather directly takes as input the intensity information from the image file. Not only is all of the available information from the image used, TBD avoids the computational intractability of the conventional feature-based line detection (i.e., “string of pearls”) approach to track detection for low SNR data.
Implementation of TBD rooted in finite set statistics (FISST) theory has been proposed recently by Vo, et al. Compared to other TBD methods applied so far to SSA, such as the stacking method or multi-pass multi-period denoising, the FISST approach is statistically rigorous and has been shown to be more computationally efficient, thus paving the path toward on-line processing. In this paper, we intend to apply a multi-Bernoulli filter to actual CCD imagery of RSOs. The multi-Bernoulli filter can explicitly account for the birth and death of multiple targets in a measurement arc. TBD is achieved via a sequential Monte Carlo implementation. Preliminary results with simulated single-target data indicate that a Bernoulli filter can successfully track and detect objects with measurement SNR as low as 2.4.
Although the advent of fast-cadence scientific CMOS sensors have made the automation of faint object detection a realistic goal, it is nonetheless a difficult goal, as measurements arcs in space surveillance are often both short and sparse. FISST methodologies have been applied to the general problem of SSA by many authors, but they generally focus on tracking scenarios with long arcs or assume that line detection is tractable. We will instead focus this work on estimating sensor-level kinematics of RSOs for low SNR too-short arc observations. Once said estimate is made available, track association and simultaneous initial orbit determination may be achieved via any number of proposed solutions to the too-short arc problem, such as those incorporating the admissible region. We show that the benefit of combining FISST-based TBD with too-short arc association goes both ways; i.e., the former provides consistent statistics regarding bearing-only measurements, whereas the latter makes better use of the precise dynamical models nominally applicable to RSOs in orbit determination.
Date of Conference: September 15-18, 2015
Track: Orbital Debris