Predicting Space Weather Effects on Close Approach Events

Lauri Newman, NASA, Rebecca Besser, Omitron, Inc, Matthew Hejduk, Astrorum, LLC

Keywords: conjunction assessment, space weather, operations

Abstract:

The NASA Robotic Conjunction Assessment Risk Analysis (CARA) team sends ephemeris data to the Joint Space Operations Center (JSpOC) for screening against the high accuracy catalog, then assesses risk posed to protected assets from predicted close approaches. Since most spacecraft supported by the CARA team are located in LEO orbits, atmospheric drag is a primary source of state estimate uncertainty, and drag is directly governed by space weather. At present the actual effect of space weather on atmospheric density cannot be accurately predicted because most atmospheric density models are empirical in nature.

The Jacchia-Bowman-HASDM 2009 atmospheric density model used at the JSpOC employs a solar storm active compensation feature that predicts storm sizes and arrival times, and thus the resulting neutral density alterations. With this feature, estimation errors can occur in either direction (i.e., over- or under-estimation of density and thus drag), giving rise to several questions. Does a change in space weather make a close approach safer or riskier? Might performing a maneuver make the approach worse due to uncertainty in predicted location at a given time? What if there are errors in the predicted timing or magnitude of the space weather event?

Although the exact effect of a solar storm on atmospheric drag cannot be determined, one can explore the effects of drag perturbations on conjuncting objects’ trajectories to determine if a conjunction can become riskier or less risky. The CARA team has constructed a Space Weather Trade-Space tool that systematically alters the drag coefficient of the conjuncting objects and recalculates the probability of collision for each case to determine the effect is likely to have on the collision risk. In addition to a review of the theory and the particulars of the tool, all of the observed output will be explained, along with statistics of their frequency.

Date of Conference: September 15-18, 2015

Track: Atmospherics/Space Weather

View Paper