Heimdall System for MSSS Sensor Tasking

Alex Herz, Orbit Logic, Brandon Jones, University of Colorado, Ella Herz, Orbit Logic, Doug George, Orbit Logic, Penina Axelrad, University of Colorado, Steve Gehly, University of Colorado

Keywords: SSA, Sensor Tasking, FISST, Optimization, Scheduling, Automation, Figure-of-Merit

Abstract:

In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site.

Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance.

The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time.

This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software’s scalability, and further tune and enhance schedule optimization.

The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved coordinated sensor usage, and tasking schedules driven by catalog improvement goals (reduced overall covariance, etc.). The improved performance also enables more responsive sensor tasking to address external events, newly detected objects, newly detected object activity, and sensor anomalies. Instead of having to wait until the next day’s scheduling phase, events can be addressed with new tasking schedules immediately (within seconds or minutes).

Perhaps the most important benefit is improved SSA based on an overall improvement to the quality of the space catalog. By driving sensor tasking and scheduling based on predicted Information Gain and other relevant factors, better decisions are made in the application of available sensor resources, leading to an improved catalog and better information about the objects of most interest.

The Heimdall software solution provides a configurable, automated system to improve sensor tasking efficiency and responsiveness for SSA applications. The FISST algorithms for Track Prioritization, SSA specific task and resource attributes, Scheduler algorithms, and configurable SSA-specific Figure-of-Merit together provide optimized and tunable scheduling for the Maui Space Surveillance Site and possibly other sites and organizations across the U.S. military and for allies around the world.

Date of Conference: September 15-18, 2015

Track: Space Situational Awareness

View Paper