Ryan Hoffmann, AFRL/RVB, Russell Cooper, Assurance Technology Corporation, Dale Ferguson, AFRL/RVB
Keywords: Material Aging, BRDF, Reflectance, charge transport
Abstract:
As a result of the interaction between the spacecraft and its operational environment, the constituent materials begin to change. These changes are determined by a combination of: chemical reactions, contamination, and energy deposition. They can range in severity from negligible to total loss of the material. Virtually all properties of the material, the mechanical, optical/thermal, and electrical are altered in largely unknown ways from the pristine materials. This negatively impacts the ability of spacecraft operators to predict the behavior of a spacecraft as it ages its environment. For example, in the case of electrical conduction in polyimide, there is a three orders of magnitude decrease in the resistivity after only eight months of simulated GEO electron exposure. Optical changes in the material also dramatically impact the ability of ground based optical observations to identify and track both known and unknown spacecraft.
We will be presenting work done within the Spacecraft Charging and Instrument Calibration Lab at AFRL/RVB to quantify the changes in total reflection, BRDF, and electrical conduction of aluminized polyimide film after simulated aging in a GEO-like electron environment. We correlate these data with the chemical structure of the film as determined by XPS and NMR. A deeper, predictive understanding of how materials change will not only increase the operational lifetime of space assets by providing more accurate data to operators, it will improve SSA by allowing ground based observers to more accurately deduce component materials and determine how long a spacecraft has been in orbit.
Date of Conference: September 15-18, 2015
Track: Poster