Development of Robust Light-weight Deformable Mirrors in Carbon Fiber

Michael Hart, (Steward Observatory), Logan Richardson (Steward Observatory), Robert Romeo (Composite Mirror Applications Inc.), Robert Martin (Composite Mirror Applications Inc.)

Keywords: Adaptive Optics, Imaging

Abstract:

Carbon fiber reinforced polymer (CFRP) has recently been developed to the point that surfaces of high optical quality can be routinely replicated. Building on this advance, we are developing a new generation of deformable mirrors (DMs) for adaptive optics application that extends long-standing expertise at the University of Arizona in large, optically powered DMs for astronomy. Our existing mirrors, up to 90 cm in diameter and with aspheric deformable facesheets, are deployed on a number of large astronomical telescopes. With actuator stroke of up to 50 microns and no hysteresis, they are delivering the best imaging ever seen from an astronomical AO system. Their Zerodur glass ceramic facesheets though are not well suited to non-astronomical applications. In this paper, we describe developmental work to replace the glass components of the DMs with CFRP, an attractive material for optics fabrication because of its high stiffness-to-weight ratio, strength, and very low coefficient of thermal expansion. Surface roughness arising from fiber print-through in the CFRP facesheets is low, < 3 nm PTV across a range of temperature, and the optical figure after correction of static terms by the DM actuators is on the order of 20 nm rms. After initial investment in an optical quality mandrel, replication costs of identical units in CFRP are very low, making the technology ideal for rapid mass production. Date of Conference: September 11-14, 2012

Track: Adaptive Optics and Imaging

View Paper