Reachability Analysis Applied to Space Situational Awareness

Marcus Holzinger (University of Colorado at Boulder), Daniel Scheeres (University of Colorado at Boulder)

Keywords: Space-Based Assets

Abstract:

Several existing and emerging applications of Space Situational Awareness (SSA) relate directly to spacecraft Rendezvous, Proximity Operations, and Docking (RPOD) and Formation / Cluster Flight (FCF). When multiple Resident Space Ob jects (RSOs) are in vicinity of one another with appreciable periods between observations, correlating new RSO tracks to previously known objects becomes a non-trivial problem. A particularly difficult sub-problem is seen when long breaks in observations are coupled with continuous, low- thrust maneuvers. Reachability theory, directly related to optimal control theory, can compute contiguous reachability sets for known or estimated control authority and can support such RSO search and correlation efforts in both ground and on-board settings. Reachability analysis can also directly estimate the minimum control authority of a given RSO. For RPOD and FCF applications, emerging mission concepts such as fractionation drastically increase system complexity of on-board autonomous fault management systems. Reachability theory, as applied to SSA in RPOD and FCF applications, can involve correlation of nearby RSO observations, control authority estimation, and sensor track re-acquisition. Additional uses of reachability analysis are formation reconfiguration, worst-case passive safety, and propulsion failure modes such as a ‘stuck’ thruster.

Existing reachability theory is applied to RPOD and FCF regimes. An optimal control policy is developed to maximize the reachability set and optimal control law discontinuities (switching) are examined. The Clohessy-Wiltshire linearized equations of motion are normalized to accentuate relative control authority for spacecraft propulsion systems at both Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO). Several examples with traditional and low thrust propulsion systems in LEO and GEO are explored to illustrate the effects of relative control authority on the time-varying reachability set surface. Both monopropellant spacecraft at LEO and Hall thruster spacecraft at GEO are shown to be strongly actuated while Hall thruster spacecraft at LEO are found to be weakly actuated. Weaknesses with the current implementation are discussed and future numerical improvements and analytical efforts are discussed.

Date of Conference: September 1-4. 2009

Track: Space-Based Assets

View Paper