Price-Based Information Routing in Complex Satellite Networks for Space-Based Situational Awareness

Yue Wang (Worcester Polytechnic Institute), Jingkai Su (Worcester Polytechnic Institute), Islam I. Hussein (Worcester Polytechnic Institute), A. M. Wyglinski (Worcester Polytechnic Institute)

Keywords:

Abstract:

Future space-based situational awareness and space surveillance systems are envisioned to include a large array of satellites that seek to cooperatively achieve full awareness over given space and terrestrial domains. Given the complexity of the communication network architecture of such a system, in this paper we build on the system architecture that was proposed by the presenting author in the 2008 AMOS conference and propose an efficient, adaptable and scalable price-based routing and bandwidth allocation algorithm for the generation, routing and delivery of surveillance information in distributed wireless satellite networks. Due to the potentially large deployments of these satellites, the access points employed in a centralized network control scheme would easily be overwhelmed due to lack of spectral bandwidth, synchronization issues, and multiple access coordination. Alternatively, decentralized schemes could facilitate the flow and transference of information between data gatherers and data collectors via mechanisms such as (multi-hop) routing, allocation of spectral bandwidths per relaying node, and coordination between adjacent nodes.

Although there are numerous techniques and concepts focusing on the network operations, control, and management of sensor networks, existing solution approaches require the use of information for routing, allocation, and decision-making that may not be readily available to the satellites in a timely fashion. This is especially true in the literature on price-based routing, where the approach is almost always game theoretic or relies on optimization techniques. Instead of seeking such techniques, in this paper we present algorithms that will (1) be energy-aware, (2) be highly adaptable and responsive to demands and seek delivery of information to desired nodes despite the fact that the source and destination are not globally known, (3) be secure, (4) be efficient in allocating bandwidth, (5) be decentralized and allow for node autonomy, and (6) be useful in aiding satellite motion and orientation control for improved performance.

Date of Conference: September 1-4. 2009

Track:

View Paper