Douglas Currie (University of Maryland College Park), David C. Thompson (Los Alamos National Laboratory), Steven E. Buck (Los Alamos National Laboratory), Rose P. des Georges (Los Alamos National Laboratory), Cheng Ho (Los Alamos National Laboratory), Dennis K. Remelius (Los Alamos National Laboratory), Bob Shirey (Los Alamos National Laboratory), Thomas Gabriele (Air Force Research Laboratory), Victor L. Gamiz (Air Force Research Laboratory), Laura J. Ulibarri (Air Force Research Laboratory)
Marc R. Hallada (Schafer Corporation), Paul Szymanski
(Schafer Corporation)
Keywords: NROC, Non-Resolved Object Characterization
Abstract:
RULLI (Remote Ultra-Low Light Imager) is a unique single photon imager with very high (microsecond) time resolution and continuous sensitivity, developed at Los Alamos National Laboratory. This technology allows a family of astrophysical and satellite observations that were not feasible in the past. We will describe the results of the analysis of recent observations of the LAGEOS II satellite and the opportunities expected for future observations of the Crab nebula.
The LAGEOS/LARES experiments have measured the dynamical General Relativistic effects of the rotation of the earth, the Lense-Thirring effect. The major error source is photon thrust and a required knowledge of the orientation of the spin axis of LAGEOS. This information is required for the analysis of the observations to date, and for future observations to obtain more accurate measurements of the Lense-Thirring effect, of deviations from the inverse square law, and of other General Relativistic effects. The rotation of LAGEOS I is already too slow for traditional measurement methods and Lageos II will soon suffer a similar fate. The RULLI camera can provide new information and an extension of the lifetime for these measurements. We will discuss the 2004 LANL observations of LAGEOS at Starfire Optical Range, the unique software processing methods that allow the high accuracy analysis of the data (the FROID algorithm) and the transformation that allows the use of such data to obtain the orientation of the spin axis of the satellite.
We are also planning future observations, including of the nebula surrounding the Crab Pulsar. The rapidly rotating pulsar generates enormous magnetic fields, a synchrotron plasma and stellar winds moving at nearly the velocity of light. Since the useful observations to date rely only on observations of the beamed emission when it points toward the earth, most descriptions of the details of the processes have been largely theoretical. The RULLI cameras continuous sensitivity and high time resolution should enable better signal to noise ratios for observations that may reveal properties like the orientation of the rotational and magnetic axes of the pulsar, the temperature, composition and electrical state of the plasma and effects of the magnetic field.
Date of Conference: September 10-14, 2006
Track: Non-Resolved Object Characterization