Technical Papers – Machine Learning for SDA Applications
Papers sorted by year (descending) and then alphabetically by title. Use CTRL F to search on this page, or the search option in the side-bar for the whole library.View Archive ProgramsIf citing a paper from the AMOS Conference proceedings archive, please provide proper attribution by referencing: Copyright © [insert applicable year] Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS) – www.amostech.com
Trier Mortlock, Lawrence Livermore National Laboratory; Ronit Agarwala, Lawrence Livermore National Laboratory; Jayson Luc Peterson, Lawrence Livermore National Laboratory; Imene Goumiri, Lawrence Livermore National Laboratory; Jason Bernstein, Lawrence Livermore National Laboratory
Keywords: Natural Language Processing, Large Language Models, Space Domain Awareness, Notice to Space Operators
Karis Courey, Booz Allen Hamilton; Stephen Gerrells, Booz Allen Hamilton; Michael Moniger, Booz Allen Hamilton; Aubrey Shields, Booz Allen Hamilton; Karen Phumisithikul, Booz Allen Hamilton
Keywords: LLMs, Space Domain Awareness, SDA, Space Battle Management, SBM, Multi-Agent Systems, Agentic Architectures, Orbital Data Analysis, Publicly Available Information, PAI, Multimodal Data Fusion, AI, Machine Learning, Anomaly Detection, RAG, NLP
Alexander Rogers, Turion Space; Mohamed Hasan, Turion Space; Ryan Westerdahl, Turion Space; Thomas Cooley, Turion Space
Keywords: Machine Learning, space-based imaging, non-earth imaging, uncertainty quantification, trustworthy AI
Aidan Lorenz, ARKA; Shawn Abernethy, ARKA; Mike Fischer, ARKA; Jacob Griesbach, ARKA; W. Jody Mandeville, InTrack Radar Technologies; Sid Arora, InTrack Radar Technologies; Tim McLaughlin, InTrack Radar Technologies; Harshitha Challa, West Virginia University; Piyush Mehta, West Virginia University
Keywords: machine learning, object detection, convolutional neural networks, CNNs, LNT, debris detection
David Kurtenbach, Kansas State University; Megan Manly, Kansas State University; Zach Metzinger, Kansas State University
Keywords: Autoencoder, Russia, Pattern of Life, Anomaly Detection, Deep Learning, SDA
Kevin Phan, EO Solutions; David Chaparro, EO Solutions; Taylor Phan, EO Solutions; Justin Fletcher, Space Systems Command A&AS
Keywords: Space Domain Awareness, Sensor Drift, Automated Target Injection, Space Situational Awareness, Object Detection, Transfer Learning, Small Aperture Telescope, Machine Learning, Deep Learning
John Ossorgin, Sandia National Laboratories; Forest Danford, Sandia National Laboratories; Kyle Merry, Sandia National Laboratories
Keywords: model zoo, hosting service, AI/ML, models, SDA, SSA, community, space control
Jorge O'Farrill, Modern Technology Solutions Incorporated; Nathan Highsmith, Modern Technology Solutions Incorporated; Isaac Nelson, University of Alabama; Elise Theriot, University of Alabama
Keywords: AI/ML, attention, transformers
Kenny Andersson, Swedish Defence Research Agency; Tim Kinnunen, Swedish Defence Research Agency; Semeli Papadogiannakis, Swedish Defence Research Agency; Rolf Ragnarsson, Swedish Defence Research Agency
Keywords: Space situational awareness, Sensor planning, Optimization, Radar, Sensor resource allocation
Allan Grosvenor, MSBAI; Abdul Wahab, MSBAI; Kyrylo Bohachov, MSBAI; Anton Zemlyansky, MSBAI; Ryland Adams, MSBAI; Dwyer Deighan, MSBAI
Keywords: autonomous systems, spacecraft control, anomaly detection, hierarchical AI, neuro-symbolic architecture, reinforcement learning, space situational awareness, space domain awareness, maneuver prediction, space traffic management
Rachel Oliver, Air Force Institute of Technology; Michael Albert, University of Texas El Paso; Olac Fuentes, The University of Texas at El Paso; Dmitry Savransky, Cornell University
Keywords: Artificial Intelligence, Machine Learning, Space Domain Awareness, Object Tracking, Event-based Vision Sensors, Space-based
Kimmy De Alba, Space Systems Command A&AS; Kevin Phan, EO Solutions; Alex Cabello, EO Solutions; Zach Gazak, Space Systems Command A&AS; Justin Fletcher, Space Systems Command A&AS
Keywords: Aperture Photometry, Machine Learning, Satellites, Stars, Autonomous Telescope Networks, Light Curves, Anomaly Detection
Zach Gazak, Space Systems Command A&AS; Ryan Swindle, Space Systems Command A&AS; Sierra Morales, University of Hawaii at Manoa; Matthew Phelps, Space Systems Command A&AS; Kevin Iott, PlaneWave Instruments; Eric Blackhurst, Planewave Instruments; Justin Fletcher, Space Systems Command A&AS
Keywords: star detection, neural networks, robotic observatories, deep learning, machine learning
Matt Brown, Rocket Lab; William Bidle, Rocket Lab; D. Brandon Knape, Rocket Lab; Brandon Whitchurch, Rocket Lab; Skip Williams, Rocket Lab
Keywords: Machine Learning, Deep Neural Network, SDA, Detection, Classification, RSO, Ellipse
Daniel Huterer Prats, University of Colorado Boulder; Hanspeter Schaub, University of Colorado Boulder; Chris Wheeler, Interactive Aptitude
Keywords: Space Situational Awareness, Space Domain Awareness, Reinforcement Learning, Autonomy, Scheduling, Space-to-Space Surveillance
Mark Stephenson, University of Colorado Boulder; Hanspeter Schaub, University of Colorado Boulder
Keywords: inspection, reinforcement learning, multi-agent, autonomy, rpo
Enrique De Alba, EO Solutions; Alexander Cabello, EO Solutions; Garrett Fitzgerald, EO Solutions; Zach Gazak, Space Systems Command A&AS; Justin Fletcher, Space Systems Command A&AS
Keywords: Large Language Models, Space Domain Awareness, Command and Control, Human-Machine Teaming, Natural Language Processing, Sensor Networks, On-premises AI
Gregory Badura, Georgia Tech Research Institute; Ebenezer Arunkumar, Georgia Tech Research Institute; Miguel Velez-Reyes, The University of Texas at El Paso; Brian Gunter, Georgia Institute of Technology; Koki Ho, Georgia Institute of Technology
Keywords: Machine Learning, Orbit Determination, Angles-Only, Cislunar, Physics Informed Machine Learning
Imène Goumiri, Lawrence Livermore National Laboratory; Luc Peterson, Lawrence Livermore National Laboratory; Ashley Cocciadiferro, Lawrence Livermore National Laboratory; Ryan Lee, Lawrence Livermore National Laboratory; Jason Bernstein, Lawrence Livermore National Laboratory
Keywords: Space domain awareness, test and evaluation, machine learning, conjunction, RPO
David Witman, Slingshot Aerospace; Timothy Olson, Slingshot Aerospace; Brian Williams, Slingshot Aerospace; Dylan Kesler, Slingshot Aerospace; Belinda Marchand, Slingshot Aerospace
Keywords: Machine Learning, Anomaly Detection, Constellations
Kyle Merry, Sandia National Laboratories; John Ossorgin, Sandia National Laboratories; Zachary Mekus, Sandia National Laboratories
Keywords: ML/AI, SDA, Transformer, Swin Transformer, Convolutional Neural Network, CNN, Feature Extraction, Backbone
Garrett Fitzgerald, U. S. Space Force; Rachel Morris, Applied Decision Science; Laura G. Militello, Applied Decision Science; Justin Fletcher, USSF/SSC
Keywords: Human-Machine Teaming, Cognitive Task Analysis, Space Domain Awareness, Trust in Autonomy, Telescope C2
Marta Guimaraes, Neuraspace; Claudia Soares, FCT-UNL; Chiara Manfletti, Neuraspace
Keywords: Space Situational Awareness, Space Debris, Unsupervised Learning, Clustering
Benedict Oakes, University of Liverpool; Jason F. Ralph, University of Liverpool; Jordi Barr, Defence Science Technology Laboratory
Keywords: Deep Reinforcement Learning, Machine Learning for SDA Applications, Space Situational Awareness
Shane Ryall, Defense Research & Development Canada
Keywords: Image Processing, Deep Learning, SSA, NEOSSat
Kevin Phan, EO Solutions; Justin Fletcher, Space Systems Command (A&AS)
Keywords: Satellite Detection, Synthetic Tracking, Convolutional Neural Networks, Signal-to-Noise Ratio, Machine Learning, Near-Earth Object Detection, Automation.
Enrique De Alba, EO Solutions; Marco de Lannoy Kobayashi, EO Solutions; Alex Cabello, EO Solutions
Keywords: Large Language Models, Space Domain Awareness, Synthetic Data Generation, Natural Language Processing, Space Surveillance Simulation, Automation in SDA
John Ebeling, Data Fusion & Neural Networks, LLC; Duane DeSieno, Data Fusion & Neural Networks, LLC; Jacob Hansen, Data Fusion & Neural Networks, LLC; Christopher Tschan, Data Fusion & Neural Networks, LLC; Carolyn Sheaff, Air Force Research Laboratory/RIED
Keywords: Electro-Optical (E-O), space surveillance observations, space surveillance imagery, space domain awareness, machine learning
Neil Dhingra, Auria; Cameron DeJac, Auria; Clayton McGuire, Auria
Keywords: Sensor Resource Management, Sensor Tasking, Space Domain Awareness, Space Situational Awareness, Global Optimality, NP Hard Problems, Machine Learning, Supervised Learning, Reinforcement Learning
Duane DeSieno, Data Fusion & Neural Networks, LLC
Keywords: Neural networks, Enhanced orbit propagation, Trajectory propagation, Machine Learning
Kevin Vanslette, Raytheon BBN; Alexander Lay, Raytheon BBN; David Kusterer, Virginia Tech Institute for National Security; Kevin Schroeder, Virginia Tech Institute for National Security
Keywords: Artificial Intelligence, Orbital Propagation, Uncertainty
Gregory Badura, Georgia Tech Research Institute; Miguel Velez-Reyes, University of Texas at El Paso; Brian Gunter, Georgia Institute of Technology; Christopher Valenta, Georgia Tech Research Institute; Koki Ho, Georgia Institute of Technology
Keywords: Machine Learning, Physics-Informed Machine Learning, Cislunar, Space Domain Awareness, Orbit Determination
Kimmy Chang, SSC/SZGA; Lauren Fisher, KBR; Zach Gazak, SSC/SZGA; Justin Fletcher, SSC/SZGA
Keywords: Spectroscopy, Machine Learning, Small Telescopes, Hyperspectral, Convolutional Neural Networks, Segmentation, Classification
Mridul Gupta, Purdue University; Mary Comer, Purdue University; Edward Delp, Purdue University; Jonathan Chan, Lockheed Martin; Mitchell Krouss, Lockheed Martin; Paul Martens, Lockheed Martin Space; Michael Jacobs, Lockheed Martin; Corbin Spells, Lockheed Martin; Moses Chan, Lockheed Martin;
Keywords: Machine Learning, Object Localization, Closely-Spaced Objects (CSOs), Remote Sensing
Peng Mun Siew, Massachusetts Institute of Technology; Haley Solera, Massachusetts Institute of Technology; Thomas G. Roberts, Massachusetts Institute of Technology; Daniel Jang, Massachusetts Institute of Technology; Victor Rodriguez-Fernandez, Universidad Politécnica de Madrid; Jonathan How, Massachusetts Institute of Technology; Richard Linares, Massachusetts Institute of Technology
Keywords: Behavioral Mode Identification, Pattern-of-Life Characterization, SSA Dataset, Astrometric Data, Machine Learning
Thomas G. Roberts, Massachusetts Institute of Technology; Victor Rodriguez-Fernandez, Universidad Politécnica de Madrid; Peng Mun Siew, Massachusetts Institute of Technology; Haley Solera, Massachusetts Institute of Technology; Richard Linares, Massachusetts Institute of Technology
Keywords: geosynchronous, station-keeping, pattern of life, maneuver detection, satellite behavior, unsupervised machine learning
Kimmy Chang, Odyssey Systems--Space Systems Command (A&AS); Justin Fletcher, USSF SSC/SZG
Keywords: Neural Radiance Fields, Machine Learning, Imaging, SSA
Kimmy Chang, Space Systems Command (A&AS); Justin Fletcher, Space Systems Command (A&AS);
Keywords: Image resolution, telescopes, imaging, atmospheric turbulence, space domain awareness
Imene Goumiri, Lawrence Livermore National Laboratory; Amanda Muyskens, Lawrence Livermore National Laboratory; Benjamin Priest, Lawrence Livermore National Laboratory; Robert Armstrong, Lawrence Livermore National Laboratory
Keywords: machine learning, gaussian process, light curve, anomaly detection, space domain awareness, uncertainty quantification
Jun Yoshida, NEC Corporation; Ryosuke Nakazawa, NEC; Naoki Yoshinaga, NEC Corporation; Taichiro Sano, NEC; Katsuaki Taya, NEC Corporation; Masatoshi Ebara, NEC Corporation; Ryosuke Togawa, NEC Corporation;
Keywords: Machine Learning, Deep Metric Learning
Ingo Waldmann, Spaceflux; Marco Rocchetto, Spaceflux; Marcel Debczynski, Spaceflux
Keywords: diffusion models, deep learning, generative models, inpainting, background modelling, data fusion
Sam Fedeler, Johns Hopkins University Applied Physics Laboratory; Marcus Holzinger, University of Colorado Boulder; William Whitacre, Draper Laborartory
Keywords: optimal sensor tasking, decentralized decision making, cislunar SSA
Gregory Badura, Georgia Tech Research Institute (GTRI); Christopher Valenta, Georgia Tech Research Institute (GTRI)
Keywords: Physics-Guided Machine Learning, Space Domain Awareness (SDA), Machine Learning, Light Curves, Time-Series Classification, Spin State, Space Debris
Andrea Scorsoglio, The University of Arizona; Andrea D'Ambrosio, The University of Arizona; Luca Ghilardi, The University of Arizona; Roberto Furfaro, The University of Arizona; Vishnu Reddy, The University of Arizona
Keywords: Orbit determination, Physics informed neural networks, Cislunar space monitoring
Peng Mun Siew, Massachusetts Institute of Technology; Tory Smith, United States Space Force, Massachusetts Institute of Technology; Richard Linares, Massachusetts Institute of Technology; Ravi Ponmalai, Aerospace Corporation
Keywords: Multi-agent Reinforcement Learning (MARL), Graph Neural Network (GNN), Sensor Tasking, Artificial Intelligence (AI), Machine Learning (ML), Deep Reinforcement Learning (DRL)
Violet Felt, U.S. Space Force; Ian McQuaid, KBR; Peter Thomas, KBR; Sean Sullivan, Pacific Defense Solutions; Jeff Houchard, EO Solutions; Justin Fletcher, USSF SSC/SZG
Keywords: Astrometry, Machine Learning, Convolutional Neural Networks, Transformers, Object Detection, Instance Segmentation, Line Segment Detection
Sam Wright, Spaceflux & University College London; Marco Rocchetto, Spaceflux; Ingo Waldmann, Spaceflux
Keywords: Optical Measurements, Deep learning, Astrometry, Data Reduction, SSA
S Shivshankar, Indian Institute of Science; Debasish Ghose, Indian Institute of Science
Keywords: Space Situational Awareness, Non-Cooperative Satellites, Maneuver Time Estimation, Time-to-Event Data Analysis, Regression Analysis, Machine Learning for SSA Applications
Ryo Kato, NEC Aerospace Systems, Ltd.; Takahito Sakaue, NEC Aerospace Systems,Ltd.; Daiki Mori, NEC Corporation; Makoto Tanaka, NEC Aerospace Systems, Ltd.; Taichiro Sano, NEC; Katsuaki Taya, NEC Corporation; Masatoshi Ebara, NEC Corporation; Ryosuke Nakazawa, NEC; Jun Yoshida, NEC; Ryosuke Togawa, NEC Corporation
Keywords: Machine Learning, Deep Learning, Metric Learning, Maneuver, SSA/SDA