John Ploschnitznig (Riverside Research)
Keywords: Debris Observation
Abstract:
The fact that satellites play a growing role in our day-to-day live, contributes to the overall assessment that these assets must be protected. As more and more objects enter space and begin to clutter this apparently endless vacuum, we begin to realize that these objects and associated debris become a potential and recurring threat. The space surveillance community routinely attempts to catalog debris through broad area search collection profiles, hoping to detect and track smaller and smaller objects. There are technical limitations to each collection system, we propose there may be new ways to increase the detection capability, effectively Teaching an old dog (FIDO), new tricks. Far too often, we are justly criticized for never stepping out of the box. The philosophy of if its not broke, dont fix it works great if you assume that we are not broke. The assumption that in order to Find new space junk we need to increase our surveillance windows and try to cover as much space as possible may be appropriate for Missile Defense, but inappropriate for finding small space debris. Currently, our Phased Array Early Warning Systems support this yearly search program to try to acquire and track space small debris. A phased array can electronically scan the horizons very quickly, but the radar does have limitations. There is a closed-loop resource management equation that must be satisfied. By increasing search volume, we effectively reduce our instantaneous sensitivity which will directly impact our ability to find smaller and smaller space debris. Our proposal will be to focus on increasing sensitivity by reducing the search volume to statistically high probability of detection volumes in space. There are two phases to this proposal, a theoretical and empirical. Theoretical: The first phase will be to investigate the current space catalog and use existing ephemeris data on all satellites in the Space Surveillance Catalog to identify volumes of space with a high likelihood of encountering transiting satellite. Also during this phase, candidate radar systems will be characterized to determine sensitivity levels necessary to detect certain sized objects. Data integration plays a critical role in lowering the noise floor of the collection area in order to detect smaller and smaller objects. Reducing the search volume to these high probability of intercept areas will allow the use of data integration to increase the likelihood of detection of small Radar Cross Section objects. Empirical: The next phase is to employ this technique using a legacy collection system. The collection community may choose any collection system. The goal will be to demonstrate how focusing on a very specific area and employing data integration will increase the likelihood of detection of smaller objects. This will result in the creation of an Inter Range Vector (IRV), which can be handed-off to downrange collection systems for additional tracking. The goal of FIDO will be demonstrate how these legacy systems can be better employed to help find smaller and smaller debris.
Date of Conference: September 10-13, 2013
Track: Poster