Asteroid Detection Results Using the Space Surveillance Telescope

Jessica D. Ruprecht, MIT Lincoln Laboratory, Gregory Ushomirsky, MIT Lincoln Laboratory, Deborah Freedman Woods, MIT Lincoln Laboratory, Herbert E. M. Viggh, MIT Lincoln Laboratory, Jacob Varey, MIT Lincoln Laboratory, Mark Cornell, MIT Lincoln Laboratory, Grant Stokes, MIT Lincoln Laboratory

Keywords: Asteroids, Asteroid Search, Near-Earth Asteroids

Abstract:

From 1998-2013, MIT Lincoln Laboratory operated a highly successful near-Earth asteroid search program using two 1-m optical telescopes located at the MIT Lincoln Laboratory Experimental Test Site (ETS) in Socorro, N.M. In 2014, the Lincoln Near-Earth Asteroid Research (LINEAR) program successfully transitioned operations from the two 1-m telescopes to the 3.5-m Space Surveillance Telescope (SST) located at Atom Site on White Sands Missile Range, N.M. This paper provides a summary of first-year performance and results for the LINEAR program with SST and provides an update on recent improvements to the moving-object pipeline architecture that increase utility of SST data for NEO discovery and improve sensitivity to fast-moving objects. Ruprecht et al. (2014) made predictions for SST NEO search productivity as a function of population model. This paper assesses the NEO search performance of SST in the first 1.5 years of operation and compares results to model predictions.

This work is sponsored by the Defense Advanced Research Projects Agency and the National Aeronautics and Space Administration under Air Force Contract #FA8721-05-C-0002. The views, opinions, and/or findings contained in this article/presentation are those of the authors / presenters and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Distribution Statement A: Approved for public release, distribution unlimited.

Date of Conference: September 15-18, 2015

Track: Poster

View Paper