Dwight Temple, ExoAnalytic Solutions, Mark Poole, Nou-systems, Matt Camp, SAIC
Keywords: Machine learning space orbit prediction perturbation neural network residual error
Abstract:
Since the advent of modern computational capacity, machine learning algorithms and techniques have served as a method through which to solve numerous challenging problems. However, for machine learning methods to be effective and robust, sufficient data sets must be available; specifically, in the space domain, these are generally difficult to acquire. Rapidly evolving commercial space-situational awareness companies boast the capability to collect hundreds of thousands nightly observations of resident space objects (RSOs) using a ground-based optical sensor network. This provides the ability to maintain custody of and characterize thousands of objects persistently. With this information available, novel deep learning techniques can be implemented. The technique discussed in this paper utilizes deep learning to make distinctions between nightly data collects with and without maneuvers. Implementation of these techniques will allow the data collected from optical ground-based networks to enable well informed and timely the space domain decision making.
Date of Conference: September 19-22, 2017
Track: Poster